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Abstract

In this second part we continue the study of the notion of GT3 1
2
-spaces which we had introduced

in part I of this paper. We study here its relation with the L-proximity spaces defined by Katsaras

in 1979, the L-uniform spaces defined by Gähler and the first author and others in 1998 and

the L-compact spaces defined by Gähler in 1995. The relation between the GT3 1
2
-spaces and the

L-topological groups will be studied in a separate paper.
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Introduction

In this paper we continue the numbering of sections and begin therefore with Section

6. Throughout this paper we use the same terminology as in part I.

In Section 6 of this paper we shall study the relation between the GT3 1
2
-spaces,

which we had introduced and studied in part I of this paper ([7]), and the L-

proximity spaces defined by Katsaras in [20]. Using the Urysohn’s Lemma, which

we had established in part I, and other results which are proved here we show many

results joining the completely regular L-topology in our sense and the L-proximity

in sense of Katsaras. We show that the L-topology associated with an L-proximity
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is completely regular in our sense. Moreover, we show that every completely regular

L-topology is compatible with an L-proximity.

Section 7 is devoted to the study of the relation of the GT3 1
2
-spaces with the

L-uniform spaces defined by Gähler and the first author and others in [15]. We

had got some results similar to what we had got for L-proximities in Section 6 of

this paper. We show that the L-topology associated with an L-uniform structure

is completely regular in our sense, and that every completely regular stratified L-

topology is compatible with an L-uniform structure, that is, every completely regular

stratified L-topology is uniformizable.

The last section is devoted to investigate the relation of the GT3 1
2
-spaces with the

L-compact spaces defined by Gähler in [13], which is called G-compact spaces. We

show also here some results joining the GT3 1
2
-spaces and the G-compact spaces. We

show that the L-unit interval (IL,=) and that the L-cube, defined as a product of

L-unit intervals are G-compact GT2-spaces and consequently GT4-spaces and hence

they are GT3 1
2
-spaces. We show also that a G-compact space is a GT2-space if and

only if it is a GT3 1
2
-space. If τ1 and τ2 are L-topologies on a set X with τ1 is finer

than τ2, and (X, τ1) is a G-compact space and (X, τ2) is a GT3 1
2
-space, then we

prove that τ1 is equivalent to τ2.

Moreover, we show that an L-topological space (X, τ) is a GT3 1
2
-space if and only

if it is homeomorphic to a subspace of an L-cube if and only if it is homeomorphic

to a subspace of a G-compact GT2-space if and only if it is homeomorphic to a

subspace of a GT4-space.

6. The relation between the GT3 1
2
-spaces and the L- proximity

spaces

In this section we are going to study and prove some results joining the L-proximity

spaces defined by Katsaras in [20] and the GT3 1
2
-spaces which we had introduced in

[7].
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We recall and use here all notations and definitions given in [7].

Now, we shall prove that the L-topology τδ associated with an L-proximity δ is

completely regular.

Proposition 6.1 If δ is an L-proximity on X, then τδ is completely regular.

Proof. Let x ∈ X and F be a closed subset of X with x 6∈ F . Since χF ′ is a τδ-

neighborhood of x, then x1 δ χF . On account of Proposition 2.5, we get that x1 and

χF are separated by a proximally continuous function f : (X, δ) → (IL, δ∗) which

is also, by means of Proposition 2.3, (τδ,=δ∗)-continuous. Hence, τδ is completely

regular. 2

To examine for a given L-topology τ on a set X, when an L-proximity on X

compatible with τ exists, we need the following proposition. It will be shown that

this happens if and only if τ is completely regular.

Proposition 6.2 Let (X, τ) be an L-topological space and let Φ be an L-function

family of all (τk,=)-continuous functions, fk : (X, τk) → (IL,=), k ∈ K and K any

class. Then (X, τ) is a completely regular space if and only if τ coincides with the

coarsest L-topology on X for which each member of Φ is (τk,=)-continuous.

Proof. Let (X, τ) be a completely regular space. Then there is a (τ,=)-continuous

mapping. If σ is the coarsest L-topology on X with respect to which each member

of Φ is (τk,=)-continuous, then τ is one of these τk and hence we have that σ ⊆ τ

holds.

Let x ∈ X, µ ∈ τ and x1 ≤ µ. Then there exists an L-continuous mapping

f : (X, τ) → (IL,=) such that f(x) = 1 and f(y) = 0 for all y ∈ s0µ
′. From the

hypothesis that σ is the coarsest L-topology on X for which each member of Φ is L-

continuous, we get that f is (σ,=)-continuous, and it follows that λ = f−1(R 1
2
) ∈ σ

such that λ(x) = R 1
2
(f(x)) = R 1

2
(1) = 1 and λ(y) = R 1

2
(f(y)) = R 1

2
(0) = 0 for all
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y1 ≤ µ′. This means that x1 ≤ λ and µ′ ≤ λ′, that is, x1 ≤ λ and λ ∈ σ with

x1 ≤ λ ≤ µ. Hence, µ ∈ σ and then τ ⊆ σ. Thus τ coincides with σ.

Conversely; assume that τ coincides with the coarsest L-topology on X for which

each member of Φ is (τk,=)-continuous, then each member of Φ is (τ,=)-continuous.

Since

B = {Rη ◦ f | f ∈ Φ, η ∈ I} ∪ {Rη ◦ f | f ∈ Φ, η ∈ I} ∪ { 0, 1 }

is a base for τ , then defining g : X → IL by g(y)(s) = 1− f(y)(1− s) for all f ∈ Φ,

s ∈ I01, y ∈ X, we get that g−1(Rη) = f−1(R1−η) and g−1(Rη) = f−1(R1−η) and

hence, g is (τ,=)-continuous and moreover

B = {f−1(Rη) | f ∈ Φ, η ∈ I01} ∪ { 0, 1 }

.

Now, let H ∈ B, x ∈ X with x ∈ H. Then, there exists f ∈ Φ and t0 ∈ I01, such

that χH = f−1(Rt0). For each y ∈ X, define g(y) : I → L by g(y)(t) = f(y)(t0 +

t(1− t0)), then g−1(Rt) = f−1(Rt0+t(1−t0)) and g−1(Rt) = f−1(Rt0+t(1−t0)) and thus

g : X → IL is (τ,=)-continuous. Also, R0(g(y)) = Rt0(f(y)) = f−1(Rt0)(y) = χH(y)

for all y ∈ X, t0 ∈ I01, f ∈ Φ, that is, R0(g(x)) = 1 and R0(g(y)) = 0 for all y with

y ∈ H ′, which means that g(y) = 0 for all y ∈ H ′ and g(x)(t) = 1 for some t ∈ I01,

and thus there exists r ∈ I01 such that Rr(g(x)) =
∧

k≥r
(g(x)(k))′ = 1. Defining h :

X → IL by h(z)(s) = g(z)(rs) for all z ∈ X, s ∈ I01, we get h is (τ,=)-continuous

and R0(h(y)) = R0(g(y)) = 0 for all y ∈ H ′ and R0(h(x)) = R0(g(x)) = 1, and

R1(h(x)) = Rr(g(x)) = 1, that is, h(x) = 1 and h(y) = 0 for all y ∈ H ′. Hence,

from Theorem 2.1, the space (X, τ) is completely regular. 2

From that every GT3 1
2
-space is a GT1-space and from Proposition 2.6, we can

deduce the following result.

Corollary 6.1 If (X, τ) is a GT3 1
2
-space and Φ is an L-function family of all L-

continuous functions f : (X, τ) → (IL,=), then any two distinct points in X are

Φ-separated.
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We should notice that Proposition 2.4 gives us another L-proximity δ which is

compatible with these GT4-topologies τ from Proposition 2.7. Now, we have the

following important result which shows that there is an L-proximity compatible

with the completely regular L-topologies.

Proposition 6.3 Let (X, τ) be a completely regular space and Φ an L-function

family of all (τ,=)-continuous functions. Then the binary relation δ on LX , defined

by

f δ g ⇐⇒ f, g are Φ-separated,

for all f, g ∈ LX , is an L-proximity on X compatible with τ , that is, τδ = τ .

Proof. Let f δ g. Then there exists a function λ ∈ Φ such that λ(x) = 1 for all

x1 ≤ f and λ(y) = 0 for all y1 ≤ g. Defining µ : X → IL by µ(x)(s) = 1−λ(x)(1−s)

for all x ∈ X and all s ∈ I, then µ is (τ,=)-continuous and µ(x)(s) = 0 for all x1 ≤ f

and µ(y)(s) = 1 for all y1 ≤ g, that is, g δ f and hence the condition (P1) of an

L-proximity is fulfilled.

Obviously, (f ∨ g) δ h implies f δ h and g δ h. On the other hand f δ h and g δ h

means that there are λ, µ ∈ Φ such that λ(x) = 1 for all x1 ≤ f and λ(y) = 0 for

all y1 ≤ h, and µ(x) = 1 for all x1 ≤ g and µ(y) = 0 for all y1 ≤ h. If we take

ν : X → IL with ν(x)(s) = max{λ(x)(s), µ(x)(s)} for all x ∈ X and all s ∈ I, then

ν is (τ,=)-continuous and ν(x) = 1 for all x1 ≤ f or x1 ≤ g and ν(y) = 0 for all

y1 ≤ h. Hence (f ∨ g) δ h and thus (P2) is fulfilled.

Defining h : X → IL by h(x)(s) = 0 for all x ∈ X and all s ∈ I, we get h(x) = 0

for all x ∈ X and h is (τ,=)-continuous. So, we can say that h(x) = 1 for any x1 ≤ 0

and h(y) = 0 for any g ∈ LX . That is, 0 and g are Φ-separated for all g ∈ LX and

hence f = 0 or g = 0 implies f δ g. Thus (P3) is fulfilled.

It is clear from the definition of δ that f δ g implies f ≤ g′ and hence (P4) holds.

Let f δ g and let µ ∈ Φ such that µ(x) = 1 for all x1 ≤ f and µ(y) = 0 for all
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y1 ≤ g. The functions λ1, λ2 : X → IL defined by

λ1(x)(s) = µ(x)(
1 + s

2
)

and

λ2(x)(s) = µ(x)(
s

2
)

for all x ∈ X and all s ∈ I01, are (τ,=)-continuous and also λ1(x)(s) = 1 for all

x1 ≤ f and λ2(x)(s) = 0 for all x1 ≤ g, but

R1(λ1(x)) = R1(µ(x)) ≥ R
1
2 (µ(x)) ≥ R 1

2
(µ(x)) = R0(λ1(x))

and

R1(λ2(x)) = R
1
2 (µ(x)) ≤ R0(µ(x)) = R0(λ2(x)).

So, if we put h = (µ−1(R
1
2 ))′ where µ−1(R

1
2 ) ∈ LX , we get

R0(λ1(x)) ≤ h′(x) ≤ R0(λ2(x)),

and then λ1(x)(s) = 0 for all x1 ≤ h and s ∈ I01 and λ2(x)(s) = 1 for all x1 ≤ h′

and s ∈ I01. That is, λ1(x) = 1 for all x1 ≤ f and λ1(y) = 0 for all y1 ≤ h, and

moreover λ2(x) = 1 for all x1 ≤ h′ and λ2(y) = 0 for all y1 ≤ g. Hence, f δ h and

h′ δ g and (P5) is fulfilled. Thus δ is an L-proximity on X.

Now, let g ∈ τ ′δ and x ∈ X with g′(x) = 1. Since g(y) = clδg(y) =
∧

g δ h′
h(y),

then there exists h ∈ LX with g δ h′ such that h(x) = 0, and g δ h′ implies there

exists f ∈ Φ such that f(x) = 1 for all x1 ≤ g and f(y) = 0 for all y1 ≤ h′. Taking

µ = f−1(R
1
2 ), we get µ(y) = R

1
2 (f(y)) ≥ (R0(f(y)))′ = 1 for all y1 ≤ g′ where g δ h′

implies h′ ≤ g′, and moreover µ(y) = R
1
2 (f(y)) ≤ R1(f(y)) ≤ g′(y) for all y ∈ X.

That is, µ ∈ τ with x1 ≤ µ and µ ≤ g′ which means g′ ∈ τ and then g ∈ τ ′ and

τδ ⊆ τ .

Conversely; let g ∈ τ ′ and g 6= clδg, that is, there is x ∈ X with clδg(x) > 0 and

g(x) = 0. Since x ∈ s0g
′ ∈ τ and (X, τ) is a completely regular space, then there

exists f ∈ Φ such that f(x) = 1 and f(y) = 0 for all y ∈ s0g. Let µ ∈ LX be defined

6



by µ(y) = (R1(f(y)))′ =
∨

t≥1
f(y)(t) for all y ∈ X, then µ(y) ≤ R0(f(y)) ≤ g′(y) for

all y ∈ X, which means that
∨

t≥1
f(x)(t) = 1 for all x1 ≤ µ and

∨
s>0

f(y)(s) = 0 for

all y1 ≤ g, that is, f(x) = 1 for all x1 ≤ µ and f(y) = 0 for all y1 ≤ g, and this

means that µ, g are Φ-separated, and so µ δ g. Now, µ δ g implies

clδg(x) =
∧

g δ λ′
λ(x) ≤ µ′(x) = R1(f(x)) = 0,

that is, clδg(x) = 0 which is a contradiction and then g ∈ τ ′δ. Therefore, τ = τδ,

that is, δ is compatible with τ . 2

Example of an L-proximity. Now, we introduce an example of an L-proximity

and we show that it induces a completely regular L-topology.

Example 6.1 Let X = {x, y} with x 6= y and let τ = {0, 1, x1, y1}. Then, by means

of Example 2.1, (X, τ) is a GT3 1
2
-space. Let δ be the binary relation on LX defined

by

f δ g ⇐⇒ there is a (τ,=)-continuous function h : (X, τ) → (IL,=) such that

h(x) = 1 for all x ∈ X with x1 ≤ f and h(y) = 0 for all y1 ≤ g

for all f, g ∈ LX . δ is, by means of Proposition 6.3, an L-proximity on X compatible

with τ , that is, the L-topology τδ associated with δ is completely regular.

The following result also goes well.

Proposition 6.4 Let (X, δ) be an L-proximity space and f, g ∈ LX with f δ g, and

let Φ be the family of those L-proximally continuous functions of (X, δ) into the L-

proximity space (IL, ρ). Then f and g are separated by a (τδ,=ρ)-continuous function

from X into IL.

Proof. From (2.1), Lemma 2.1 and Remark 2.1 we can deduce that f and g are

Φ-separated, and therefore, by means of Proposition 2.3, they are separated by a

(τδ,=ρ)-continuous function. 2
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If δ1 and δ2 are two L-proximities on a set X, then δ1 is finer than δ2 or δ2 is

coarser than δ1, provided

f δ2 g implies f δ1 g

for all f, g ∈ LX ([14, 20]).

From the last proposition we prove this result.

Proposition 6.5 Let τ1, τ2 be two completely regular L-topologies on a set X. Let

δ1 be an L-proximity compatible with τ1 and δ2 the L-proximity defined by

f δ2 g ⇐⇒ f, g are Φ-separated in (X, τ2).

Then, τ2 is finer than τ1 implies δ2 is finer than δ1.

Proof. Suppose that f δ1 g. By Proposition 6.3 there exists a (τ1,=)-continuous

function h : X → IL such that h(x) = 1 for all x1 ≤ f and h(y) = 0 for all y1 ≤ g.

Since τ1 ⊆ τ2, then h is (τ2,=)-continuous and from the definition of δ2 we get that

f δ2 g. Hence, δ2 is finer than δ1. 2

7. The relation between the GT3 1
2
-spaces and the L-uniform

spaces

This section is devoted to study the relation of the L-uniform spaces defined in [15]

with the GT3 1
2
-spaces.

L-uniform structures. Let U be an L-filter on X ×X. The inverse U−1 of U
is an L-filter on X ×X defined by U−1(u) = U(u−1) for all u ∈ LX×X , where u−1 is

the inverse of u defined by: u−1(x, y) = u(y, x) for all x, y ∈ X ([15]).

For each pair (x, y) of elements x, y of X, the mapping (x, y)
.

: LX×X → L

defined by (x, y)
.
(u) = u(x, y) for all u ∈ LX×X is a homogeneous L-filter on X×X.
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Let U and V be L-filters on X×X such that (x, y)
. ≤ U and (y, z)

. ≤ V hold for

some x, y, z ∈ X. Then the composition V ◦ U of U and V is the L-filter on X ×X

defined by

(V ◦ U)(w) =
∨

v◦u≤w

(U(u) ∧ V(v))

for all w ∈ LX×X , where u, v, v ◦u ∈ LX×X and (v ◦u)(x, y) =
∨

z∈X
( u(x, z)∧ v(z, y))

for all x, y ∈ X ([15]).

By an L-uniform structure U on a set X ([15]) we mean an L-filter on X × X

such that:

(U1) (x, x)
. ≤ U for all x ∈ X.

(U2) U = U−1.

(U3) U ◦ U ≤ U .

An L-uniform structure U on X is called a homogeneous L-uniform structure if it is

a homogeneous L-filter on X ×X. A set X equipped with an L-uniform structure

(homogeneous L-uniform structure) U is called an L-uniform space (homogeneous

L-uniform space).

If (X,U) and (Y,V) are L-uniform spaces, then the mapping f : (X,U) → (Y,V)

is said to be L-uniformly continuous provided

FL(f × f)(U) ≤ V

holds.

Let U be an L-filter on X × X such that (x, x)
. ≤ U holds for all x ∈ X, and

let M be an L-filter on X. Then the mapping U [M] : LX → L, defined by

U [M](f) =
∨

u[g]≤f

(U(u) ∧M(g))

for all f ∈ LX , is an L-filter on X, called the image of M with respect to U ([15]),

where u ∈ LX×X and g, u[g] ∈ LX such that:

u[g](x) =
∨

y∈X

(g(y) ∧ u(y, x)).
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To each L-uniform structure U on X is associated a stratified L-topology τU .

The related interior operator intU is given by ([15]):

(intUf)(x) = U [ẋ](f) (7.1)

for all x ∈ X, f ∈ LX . An L-set f is called a τU -neighborhood of x ∈ X provided

U [ẋ] ≤ ḟ .

Proposition 7.1 [15] Let f : (X,U) → (Y,V) be an L-uniformly continuous map-

ping between L-uniform spaces. Then the mapping f : (X, τU) → (Y, τV) between the

associated L-topological spaces is (τU , τV)-continuous.

From (1.2) and (7.1) we have the following

U [ẋ] = N (x) and U [ḟ ] = N (f) (7.2)

for all x ∈ X, f ∈ LX , where N (x) and N (f) are the L-neighborhood filters of the

space (X, τU) at x and f , respectively.

An L-proximity δ on a set X is called stratified if α δ α′ for all α ∈ L ([14, 20]).

We have the following result.

Proposition 7.2 [6] Let (X, τ) be an L-topological space. Then the binary relation

δ on LX which is defined by

g δ f if and only if N (g) ≤ ḟ ′,

for all f, g ∈ LX , is an L-proximity on X, where ≤ is the finer relation between

L-filters and N (g) is the L-neighborhood filter of (X, τ) at g.

From (7.2) and Proposition 7.2 we shall deduce the following important result.

Proposition 7.3 For an L-uniform structure U on X, we get that the binary rela-

tion δU on LX defined by

f δU g ⇔ U [ḟ ] ≤ ġ′, (7.3)
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for all f, g ∈ LX , is a stratified L-proximity on X, and moreover both of the L-

uniform structure U and the induced stratified L-proximity δU are associated with

the same stratified L-topology τU = τδU .

Proof. From (7.2) and Proposition 7.2, we get that δU , defined by (7.3), is an L-

proximity on X. Since α ∈ τU for all α ∈ L, then U [α̇] ≤ α̇ for all α ∈ L, and thus

α δU α′ for all α ∈ L. That is, δU is a stratified L-proximity on X. From (7.3) we

get that x1 δU f ′ ⇐⇒ U [ẋ] ≤ ḟ , that is, f is a τδU -neighborhood of x if and only if

it is a τU -neighborhood of x. Hence both of U and δU are associated with the same

stratified L-topology τU = τδU . 2

We shall use the following result.

Proposition 7.4 [15] Let (X,U), (Y,V) be two L-uniform spaces. Then f : (X,U) →
(Y,V) is L-uniformly continuous if and only if f : (X, δU) → (Y, δV) between the

associated stratified L-proximity spaces is (δU , δV)-continuous.

From Proposition 2.5 and from Propositions 7.3 and 7.4, we can deduce the

following.

Proposition 7.5 Let F,G ∈ P (X) with U [Ḟ ] = U [χ̇F ] ≤ ˙χG′ = Ġ′ in the L-

uniform space (X,U) and let Φ be the family of those L-uniformly continuous func-

tions h : (X,U) → (IL,U∗) for which x ∈ X implies 0 ≤ h(x) ≤ 1. Then χF and

χG are Φ-separable.

Proof. From Proposition 7.3, we have χF δU χG, and from Proposition 2.5, we get

that χF , χG are separated by an L-proximally continuous mapping f : (X, δU) →
(IL, δU∗). Proposition 7.4 implies that f : (X,U) → (IL,U∗) is then L-uniformly

continuous. 2

Now, we shall prove that the stratified L-topology associated with an L-uniform

structure is completely regular.
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Proposition 7.6 If U is an L-uniform structure on X and τU the L-topology asso-

ciated with U , then (X, τU) is a completely regular space.

Proof. Let x ∈ X and F ∈ τ ′U with x 6∈ F . Since χF ′ is a τU -neighborhood of x,

that is, U [ẋ] = N (x) ≤ Ḟ ′. On account of Proposition 7.5, we get that x1 and χF

are separated by an L-uniformly continuous function f : (X,U) → (IL,U∗) which

is also, by means of Proposition 7.1, (τU ,=U∗)-continuous. That is, (X, τU) is a

completely regular space. 2

Example of an L-uniform structure. In the following we give an example of

an L-uniform structure and we show that it induces a completely regular L-topology.

Example 7.1 The L-metrics in sense of S. Gähler and W. Gähler ([11]) canonically

generate homogeneous L-uniform structures as follows: For each L-metric % on a set

X, the mapping U% : LX×X → L, defined by

U%(u) =
∨

εα, δ◦%≤u, 0<δ

α

for all u ∈ LX×X , is a homogeneous L-uniform structure on X and moreover τU% = τ%

(cf. [15]). From Propositions 2.8 and 2.9 we get that τ% and hence τU% is a completely

regular stratified topology.

The L-uniform structures can be characterized by means of families of prefilters

on X ×X as follows.

Proposition 7.7 [15] There is a one - to - one correspondence between the L-

uniform structures U on X and the families (Uα)α∈L0 of prefilters on X ×X which

fulfill the following conditions:

(u1) 0 < β ≤ α implies Uα ⊆ Uβ.

(u2) For each α ∈ L0 with
∨

0<β<α
β = α we have Uα =

⋂
0<β<α

Uβ.

(u3) For all α ∈ L0, u ∈ Uα and x ∈ X we have α ≤ u(x, x).
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(u4) u ∈ Uα implies u−1 ∈ Uα for all α ∈ L0.

(u5) For each α ∈ L0 and each u ∈ Uα, we have α ≤ ∨
v∈Uβ , v◦v≤u

β.

This correspondence is given by

Uα = α-prU for all α ∈ L0 and U(u) =
∨

v∈Uα, v≤u

α

for all u ∈ LX×X , where α-prU = {u ∈ LX×X | U(u) ≥ α}.

An L-topogenous order (structure) ¿ is called perfect ([22]) if for each family

(fi)i∈I of L-subsets of X with fi ¿ g for all i ∈ I it follows
∨
i∈I

fi ¿ g.

Proposition 7.8 [22] There is a one - to - one correspondence between the perfect

L-topogenous structures ¿ on a set X and the L-topologies τ on X. This corre-

spondence is given by

f ¿ g ⇔ f ≤ k ≤ g for some k ∈ τ

for all f, g ∈ LX and

τ = { f ∈ LX | f ¿ f }.

Let (X, τ) be a stratified L-topological space and ¿ the complementarily sym-

metric perfect L-topogenous structure on X identified with τ , by means of Propo-

sition 7.8, and for each α ∈ L0 let uα : X ×X → L be the mappings which satisfy

that uα(x, x) = 1 for all x ∈ X and fulfill the following:

uα[f ] =





f if f ¿ (g ∧ α) for some g ∈ τ ,

1 otherwise.

(7.4)

Lemma 7.1 These uα, for all α ∈ L0, satisfy the following:

(1) f ≤ uα[f ] for all f ∈ LX ,
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(2) α = uα[α] for all α ∈ L0,

(3) uα ◦ uα = uα for all α ∈ L0,

(4) f = uα[f ] for all f ∈ τ .

Here, using Lemma 7.1, we prove this result.

Lemma 7.2 For each α ∈ L0 let Uα be the set of all mappings uα which fulfill

(7.4) and that uα(x, x) = 1 for all x ∈ X. Then the family (Uα)α∈L0 is a family of

prefilters on X ×X and fulfills the conditions (u1) to (u5) of Proposition 7.7.

Proof. For 0 < α ≤ β we have: (1) If f ¿ (g ∧ α) for some g ∈ τ , then uα[f ] = f ,

and f ¿ (g∧α) ≤ (g∧β) implies f ¿ (g∧β) which means that uβ[f ] = f = uα[f ].

(2) When f ¿ (h ∧ β) for some h ∈ τ we get uβ[f ] = f ≤ uα[f ].

The other cases of f also satisfy that uβ[f ] ≤ uα[f ]. Hence, Uβ ⊆ Uα and (u1) is

fulfilled.

From (u1) we get that
⋂

0<β<α
Uβ ⊆ Uα. But whenever f ¿ (g ∧ α) for some

g ∈ τ we have uα[f ] = f ≤ uβ[f ] for all 0 < β < α and α =
∨

0<β<α
β. And

also, if f 6¿ (g ∧ α) for all g ∈ τ we get that uα[f ] = 1 ≤ ⋂
0<β<α

uβ[f ] = 1, and

then
⋂

0<β<α
uβ[f ] ≥ uα[f ] for all f ∈ LX , which means that

⋂
0<β<α

Uβ ⊇ Uα. Hence

Uα =
⋂

0<β<α
Uβ and (u2) holds.

From that uα[1] = 1 for all α ∈ L0, we get that

uα[1](x) =
∨

y∈X

(1(y) ∧ uα(y, x)) =
∨

y∈X

(uα(y, x)) = uα(x, x) = 1

for all x ∈ X, that is, uα(x, x) ≥ α for all α ∈ L0, x ∈ X and all uα ∈ Uα. Hence

(u3) holds.

For f ¿ (g ∧ α) for some g ∈ τ we have f ≤ α, and then uα[f ](x) =
∨

y∈X
(f(y)∧

uα(y, x)) = f(x) for all x ∈ X (from that f(x) ≤ α and α ≤ uα(x, x)). Also, when

uα[f ] = 1, we get uα[f ](x) =
∨

y∈X
(f(y) ∧ uα(y, x)) = uα(x, x) = 1 for all x ∈ X.

14



Now, u−1
α [f ](x) =

∨
y∈X

(f(y)∧u−1
α (y, x)) =

∨
y∈X

(f(y)∧uα(x, y)). If f ¿ (g∧α), then

u−1
α [f ](x) = f(x) for all x ∈ X, otherwise u−1

α [f ](x) = uα(x, x) = 1 for all x ∈ X.

That is, u−1
α ∈ Uα whenever uα ∈ Uα and therefore (u4) is fulfilled.

Since uα ◦ uα = uα for all α ∈ L0 and all uα ∈ Uα, then

α ≤ ∨

uβ∈Uβ ,uβ≤uα

β =
∨

uβ∈Uβ ,uβ◦uβ≤uα

β,

and therefore (u5) is fulfilled.

Now, we prove that for all α ∈ L0, these sets Uα are prefilters on X ×X.

Let 0̃ : X × X → L be the mapping defined by 0̃(x, y) = 0 for all x, y ∈ X.

Then 0̃[f ](x) =
∨

y∈X
(f(y) ∧ 0̃(y, x)) = 0 for all f ∈ LX and x ∈ X, and even

0̃(x, x) = 0 6= 1. Hence 0̃ 6∈ Uα.

Let u ∈ Uα and v ≥ u. Then v(x, x) = 1 for all x ∈ X, and also v[f ] ≥ u[f ] for

all f ∈ LX . If f ¿ (g ∧ α) for some g ∈ τ , we have f ≤ α and v(x, x) = 1 ≥ α,

and then v[f ](x) =
∨

y∈X
(f(y) ∧ v(y, x)) = f(x) for all x ∈ X. That is, v[f ] = f .

Otherwise, if f ¿ (g ∧ α) does not hold for all g ∈ τ , we get that v[f ] ≥ u[f ] = 1

for all f ∈ LX . Hence v ∈ Uα.

Let u, v ∈ Uα. Then (u ∧ v)(x, x) = u(x, x) ∧ v(x, x) = 1 for all x ∈ X. Since

(u ∧ v)[f ](x) =
∨

y∈X

(f(y) ∧ (u ∧ v)(y, x))

=
∨

y∈X

(f(y) ∧ u(y, x)) ∧ ∨

y∈X

(f(y) ∧ v(y, x))

= u[f ](x) ∧ v[f ](x)

for all f ∈ LX and x ∈ X. Then (u ∧ v)[f ] = u[f ] ∧ v[f ] for all f ∈ LX . If

f ¿ (g ∧ α) for some g ∈ τ , we have (u ∧ v)[f ] = f . Otherwise, (u ∧ v)[f ] = 1.

Hence (u∧ v) ∈ Uα. Thus (Uα)α∈L0 is a family of prefilters on X×X and fulfills the

conditions (u1) to (u5). 2

Now, we have the following important result which shows that the L-uniform

structures are compatible with the completely regular stratified L-topologies.
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Proposition 7.9 Let (X, τ) be a completely regular stratified L-topological space

and Φ an L-function family of all (τ,=)-continuous functions on X. Then the

mapping U : LX×X → L defined by

U(u) =
∨

v∈Uα, v≤u

α for all u ∈ LX×X ,

where Uα is the set of all mappings uα which fulfill (7.4) and that uα(x, x) = 1 for

all x ∈ X, is an L-uniform structure on X compatible with τ , that is, τU = τ .

Proof. From Lemma 7.2 and Proposition 7.7, we get that U is an L-uniform

structure on X.

Now, let g ∈ τU , g 6= 1 and g(x) = 1. Then intUg(x) =
∨

u[h]≤g
(U(u) ∧ h(x)) = 1,

which means that there is some uα ∈ Uα with U(uα) = 1 ≥ α such that uα[h] = h ≤
g, h ¿ (k ∧ α) for some k ∈ τ , and this means that k = (g ∧ α) ∈ τ satisfies that

h ≤ k ≤ g, h(x) = 1 and k ∈ τ , that is, k(x) = 1, k ≤ g and k ∈ τ , and then g ∈ τ

and τU ⊆ τ .

Conversely; let g ∈ τ , g 6= 1 and g 6= intUg, that is, there is x ∈ X with

intUg(x) = 0 and g(x) > 0. Since x ∈ s0g ∈ τ and (X, τ) is a completely regular

space, then there exists f : (X, τ) → (IL,=) such that f(x) = 1 and f(y) = 0 for all

y ∈ s0g
′. Let µ ∈ LX be defined by µ(y) = (R1(f(y)))′ =

∨
t≥1

f(y)(t) for all y ∈ X,

then µ(y) ≤ R0(f(y)) ≤ g(y) for all y ∈ X, which means that
∨

t≥1
f(x)(t) = 1 for

all x1 ≤ µ and
∨

s>0
f(y)(s) = 0 for all y1 ≤ g′, that is, f(x) = 1 for all x1 ≤ µ and

f(y) = 0 for all y1 ≤ g′, and this means that x1, g
′ are Φ-separated for all x1 ≤ µ,

and so µ, g′ are Φ-separated, and from (2.1) and Proposition 6.3 we get µ ¿ g,

µ(x) = 1.

Now, intUg(x) =
∨

u[h]≤g
(U(u) ∧ h(x)) ≥ ∨

uα[h]≤g
h(x) for some uα ∈ Uα with

U(uα) = 1 ≥ α, which means that intUg(x) ≥ ∨
h¿g,g∈τ

h(x), and is also satisfied

when replacing h by µ, that is,

intUg(x) ≥ ∨

h¿g,g∈τ

h(x) ≥ µ(x) = 1,
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and then intUg(x) = 1 > 0 which is a contradiction and therefore g ∈ τU . That is,

τ = τU , and thus U is compatible with τ . 2

8. The relation between the GT31
2
-spaces and the G-Compact

spaces

Let M be an L-filter on a set X. The element x ∈ X is said to be a cluster point of

M if the infimum M∧N (x) of M and the L-neighborhood filter N (x) at x exists.

Equivalently if there exists an L-filter K finer than M which converges to x, that

is, K ≤ N (x) ([13]).

G-Compact spaces. An L-topological space (X, τ) is called G-compact ([13])

if every L-filter on X has a cluster point in X. This notion of L-compactness fulfills

the Tychonoff Theorem, that is, the product of a family of G-compact spaces is

G-compact ([13]).

Proposition 8.1 [6] Every G-compact subset of GT2-space is closed and every G-

compact GT2-space is GT4-space. Moreover, every closed subset of G-compact space

(X, τ) is G-compact.

Let us define the cartesian product of a number of copies of the L-unit interval

IL, equipped with the product L-topology on it, as an L-cube.

In the following we shall benefit from these facts.

(I) The pair (I, τI), of the closed unit interval I and the usual topology TI on it,

is a compact T2-space in the classical topology.

(II) The closed unit interval I = [0, 1] can be identified with the L-number [0, 1]∼

which has value 1 over [0, 1] and 0 otherwise ([11]).

(III) The L-topology = on IL is, up to an identification ([11]), the usual topology

on I.
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Proposition 8.2 The L-unit interval (IL,=) is a G-compact GT2-space.

Proof. Let (I, TI) be the closed unit interval with the usual topology on it. From

that in the classical topology we have (I, TI) is a compact space, that is, every filter

on I has a cluster point, then defining κ : I → IL by κ(r) = r̃ for all r ∈ I, we

get a homeomorphism between (I, TI) and (IL,=) and hence (IL,=) is a G-compact

space.

Also, since (I, TI) is a T2-space, that is, any two distinct points have disjoint TI-

neighborhoods, then using the same homeomorphism above, we have for any f 6= g

in IL two disjoint =-neighborhoods, that is, N (f) ∧ N (g) does not exist, and thus

(IL,=) is a GT2-space. Hence, (IL,=) is a G-compact GT2-space. 2

Now, we prove the following result.

Proposition 8.3 The L-unit interval (IL,=) is a GT3 1
2
-space.

Proof. Since (IL,=), by means of Proposition 8.2, is a G-compact GT2-space, then

from Proposition 8.1, we get that (IL,=) is a GT4-space. Hence, Proposition 2.8

gives us that (IL,=) is a GT3 1
2
-space. 2

From that G-compact spaces fulfill the Tychonoff Theorem ([13]) and from (3) in

Proposition 1.3 the product L-topological space of GT2-spaces also is a GT2-space.

Then, by means of Propositions 8.1 and 8.2, the following result goes clear.

Proposition 8.4 The L-cube is a G-compact GT2-space, and consequently a GT4-

space.

Proof. Since the L-cube is the product of copies of L-unit interval (IL,=) and

since (IL,=) is, by means of Proposition 8.2, G-compact GT2-space, then from (3) in

Proposition 1.3 and from that the G-compact spaces fulfill the Tychonoff Theorem it

follows that the L-cube is G-compact GT2-space. Moreover, Proposition 8.1 implies

that the L-cube is GT4-space. 2
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We shall prove the following important result.

Proposition 8.5 Let (X, τ) be an L-topological space and let Φ be the family of all

L-continuous functions f : (X, τ) → (IL,=). For each f ∈ Φ, let Yf denote the

space IL. Let Y =
∏

f∈Φ
Yf with the product L-topology =Y on it. If (X, τ) is a GT3 1

2
-

space, then X is homeomorphic to a subspace of Y . More Precisely, the mapping

e : X → Y , e(x) = x̂ =
∏

f∈Φ
xf , xf = f(x), is a homeomorphism from X onto e(X)

when (X, τ) is a GT3 1
2
-space.

Proof. Suppose that (X, τ) is a GT3 1
2
-space and consider the evaluation map e :

X → Y , x 7→ (f(x))f∈Φ = x̂. In view of Corollary 6.1, e is one - one. Also e is L-

continuous from that every f ∈ Φ is continuous (each composition pf ◦ e : X → Yf ,

x 7→ f(x) is continuous, where pf : Y → Yf denotes the projection map). If

Z = e(X), then e : (X, τ) → (Z,=Z) is a bijection L-continuous mapping.

Now we show that e is L-open. As in the proof of Proposition 6.2, the family

B = {f−1(µ) | f ∈ Φ, µ ∈ =}.

is a base for the L-topology τ on X. Since for a family (gj)j∈J of L-sets in X, we

have e(
∨

j∈J
gj) =

∨
j∈J

e(gj) and e(g1 ∧ · · · ∧ gn) = e(g1)∧ · · · ∧ e(gn), it follows that to

show that e is L-open, it is sufficient to show that e(ρ) ∈ =Z for each ρ ∈ B.

Let f ∈ Φ, µ ∈ = in Yf and ρ = f−1(µ) = µ ◦ f with ρ ∈ B. Then

e(ρ)(x̂) =
∨

x∈e−1(x̂)

ρ(x) = ρ(x) = µ(f(x)) =
∨

x̂∈p−1
f

(f(x))

µ(f(x)) = p−1
f (µ)(x̂)

for all x̂ = e(x) ∈ Z. Since p−1
f (µ) |Z= e(ρ) and pf is continuous, then p−1

f (µ) |Z is

open in τZ and thus e(ρ) ∈ τZ . Hence e is L-open and therefore e : X → Z is a

homeomorphism and (X, τ) is homeomorphic to a subspace of Y =
∏

f∈Φ
Yf . 2

The following result now is obtained.

Proposition 8.6 Let (X, τ) be an L-topological space. Then (X, τ) is a GT3 1
2
-space

if and only if X is homeomorphic to a subspace of an L-cube.
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Proof. From Proposition 8.5, the necessity of the condition follows.

Since the L-unit interval (IL,=) is a GT3 1
2
-space from Proposition 8.3 and that

the product L-topological space of GT3 1
2
-spaces is also a GT3 1

2
-space from Corollary

3.1, then (X, τ) itself is a GT3 1
2
-space. 2

The following results come easily.

Proposition 8.7 A G-compact space (X, τ) is a GT2-space if and only if it is a

GT3 1
2
-space.

Proof. Since any GT2-space (X, τ) which is G-compact is a GT4-space, then it is,

by means of Proposition 2.8, a GT3 1
2
-space.

The other direction follows from Proposition 2.1 and from (1) in Proposition 1.3.

2

Lemma 8.1 [6] If τ1 and τ2 are L-topologies on a set X, τ1 is finer than τ2 and

(X, τ1) is G-compact, then (X, τ2) also is G-compact.

Now we prove this result.

Proposition 8.8 Let τ1 and τ2 be L-topologies on a set X with τ1 be finer than

τ2, and let (X, τ1) be a G-compact space and (X, τ2) be a GT3 1
2
-space. Then τ1 is

equivalent to τ2.

Proof. From Proposition 2.13, we get (X, τ1) is also a GT3 1
2
-space, and from Lemma

8.1 we have (X, τ2) is also a G-compact space. Then we can find the identity mapping

idX : (X, τ1) → (X, τ2) which is a bijective L-continuous mapping and L-open, that

is, a homeomorphism. Hence, (X, τ1) is equivalent to (X, τ2). 2

Now, we show this essential proposition.

Proposition 8.9 For every L-topological space (X, τ) the following are equivalent:
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(1) (X, τ) is a GT3 1
2
-space,

(2) X is homeomorphic to a subspace of an L-cube,

(3) X is homeomorphic to a subspace of a G-compact GT2-space,

(4) X is homeomorphic to a subspace of a GT4-space.

Proof.

(1) ⇒ (2): Follows from Proposition 8.6.

(2) ⇒ (3): Since every L-cube is a G-compact GT2-space, then this implication

is true.

(3) ⇒ (4): Follows from that every G-compact GT2-space is a GT4-space.

(4) ⇒ (1): From (3) in Proposition 1.3 we have that every subspace of a GT4-

space is a GT4-space, and therefore is a GT3 1
2
-space. 2
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