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Abstract

In this second part we continue the study of the notion of GT3 1-spaces which we had introduced
in part I of this paper. We study here its relation with the L-proximity spaces defined by Katsaras
in 1979, the L-uniform spaces defined by Gé&hler and the first author and others in 1998 and
the L-compact spaces defined by Gahler in 1995. The relation between the G175 1-spaces and the
L-topological groups will be studied in a separate paper.
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Introduction

In this paper we continue the numbering of sections and begin therefore with Section

6. Throughout this paper we use the same terminology as in part I.

In Section 6 of this paper we shall study the relation between the GT3 1-spaces,
which we had introduced and studied in part I of this paper ([7]), and the L-
proximity spaces defined by Katsaras in [20]. Using the Urysohn’s Lemma, which
we had established in part I, and other results which are proved here we show many
results joining the completely regular L-topology in our sense and the L-proximity

in sense of Katsaras. We show that the L-topology associated with an L-proximity
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is completely regular in our sense. Moreover, we show that every completely regular

L-topology is compatible with an L-proximity.

Section 7 is devoted to the study of the relation of the GT3 1-spaces with the
L-uniform spaces defined by Géhler and the first author and others in [15]. We
had got some results similar to what we had got for L-proximities in Section 6 of
this paper. We show that the L-topology associated with an L-uniform structure
is completely regular in our sense, and that every completely regular stratified L-
topology is compatible with an L-uniform structure, that is, every completely regular

stratified L-topology is uniformizable.

The last section is devoted to investigate the relation of the G'T 1-spaces with the
L-compact spaces defined by Géhler in [13], which is called G-compact spaces. We
show also here some results joining the G715 1-spaces and the G-compact spaces. We
show that the L-unit interval (I, <) and that the L-cube, defined as a product of
L-unit intervals are G-compact GTs-spaces and consequently GT)-spaces and hence
they are G173 1-spaces. We show also that a G-compact space is a GTs-space if and
only if it is a Gy 1-space. If 71 and 75 are L-topologies on a set X with 77 is finer
than 75, and (X, 71) is a G-compact space and (X, 1) is a GTS%—space, then we
prove that 71 is equivalent to 7.

Moreover, we show that an L-topological space (X, 7) is a G153 1-space if and only
if it is homeomorphic to a subspace of an L-cube if and only if it is homeomorphic
to a subspace of a G-compact GT;y-space if and only if it is homeomorphic to a

subspace of a GTy-space.

6. The relation between the GI'3.-spaces and the L- proximity
2

spaces

In this section we are going to study and prove some results joining the L-proximity

spaces defined by Katsaras in [20] and the GT3.-spaces which we had introduced in
2

[7].



We recall and use here all notations and definitions given in [7].

Now, we shall prove that the L-topology 75 associated with an L-proximity ¢ is

completely regular.
Proposition 6.1 IfJ is an L-proximity on X, then 75 is completely reqular.

Proof. Let z € X and F be a closed subset of X with z ¢ F. Since xp is a 75-
neighborhood of x, then z; 6 xz. On account of Proposition 2.5, we get that z; and
Xr are separated by a proximally continuous function f : (X,9) — (I,0*) which
is also, by means of Proposition 2.3, (75, S+ )-continuous. Hence, 75 is completely

regular. O

To examine for a given L-topology 7 on a set X, when an L-proximity on X
compatible with 7 exists, we need the following proposition. It will be shown that

this happens if and only if 7 is completely regular.

Proposition 6.2 Let (X, 1) be an L-topological space and let ® be an L-function
family of all (13, ¥)-continuous functions, fr: (X, 1) — (I1,), k € K and K any
class. Then (X, T) is a completely reqular space if and only if 7 coincides with the

coarsest L-topology on X for which each member of ® is (14, ¥)-continuous.

Proof. Let (X, 7) be a completely regular space. Then there is a (7, ¥)-continuous
mapping. If ¢ is the coarsest L-topology on X with respect to which each member
of ® is (13, ¥)-continuous, then 7 is one of these 7, and hence we have that o C 7

holds.

Let z € X, p € 7 and 271 < pu. Then there exists an L-continuous mapping
[ (X,7) = (I,9) such that f(z) =1 and f(y) = 0 for all y € sou/. From the
hypothesis that o is the coarsest L-topology on X for which each member of ® is L-

continuous, we get that f is (o, ¥)-continuous, and it follows that A = f _1(R%) €o

such that \(x) = R%(f(m)) = R%(T) =1 and \Ny) = R%(f(y)) = R1(0) =0 for all



y1 < g'. This means that z; < A and ¢/ < ), that is, x;1 < A and A € o with

r1 < A < pu. Hence, i € 0 and then 7 C ¢. Thus 7 coincides with o.

Conversely; assume that 7 coincides with the coarsest L-topology on X for which
each member of @ is (73, )-continuous, then each member of ® is (7, &)-continuous.

Since
= {Ryof | fednel} U{R"of | fednel}U{0,1}

is a base for 7, then defining g : X — I, by g(y)(s) =1 — f(y)(1 —s) for all f € ,
s € In1, y € X, we get that g~ '(R,) = f~*(R'"™) and ¢~ *(R") = f~'(Ry_,) and

hence, g is (7, ¥)-continuous and moreover

B={f"Y(R,) | fe®.nelntu{0,T}

Now, let H € B, x € X with x € H. Then, there exists f € ® and ty € Iy, such
that xg = f~'(Ry,). For each y € X, define g(y) : I — L by g(y)(t) = f(y)(to +
t(1 —t)), then g7 (Ry) = f~ (Rigre(1-to)) and g 1 (R') = f~1(RT(1=%)) and thus
g X — Ipis (1, 3)-continuous. Also, Ro(g(y)) = R, (f(y)) = [~ (Re,)(y) = xu ()
for all y € X, tg € Io1, f € ®, that is, Ro(g(z)) = 1 and Ry(g(y)) = 0 for all y with
y € H', which means that g(y) =0 for all y € H' and g(x)(¢t) = 1 for some ¢ € Iy,
and thus there exists r € Iy such that R"(g(z)) = A (g(x)(k)) = 1. Defining h :
X — I by h(z)(s) = g(2)(rs) for all z € X, s € IOlk, we get h is (7, J)-continuous
and Ro(h(y)) = Ro(g(y)) = 0 for all y € H' and Ro(h(z)) = Ro(g(z)) = 1, and
RY(h(z)) = R"(g(x)) = 1, that is, h(z) = 1T and h(y) = 0 for all y € H'. Hence,
from Theorem 2.1, the space (X, 7) is completely regular. O

From that every GT3i-space is a GT'-space and from Proposition 2.6, we can
2

deduce the following result.

Corollary 6.1 If (X,7) is a GT3:-space and ® is an L-function family of all L-
continuous functions f : (X,7) — (I1,$), then any two distinct points in X are

d-separated.



We should notice that Proposition 2.4 gives us another L-proximity 6 which is
compatible with these GTy-topologies 7 from Proposition 2.7. Now, we have the
following important result which shows that there is an L-proximity compatible

with the completely regular L-topologies.

Proposition 6.3 Let (X,7) be a completely reqular space and ® an L-function
family of all (1,)-continuous functions. Then the binary relation § on L~ defined
by

fdg <= f, g are ®-separated,

for all f,g € LY, is an L-proxzimity on X compatible with T, that is, 7s = T.

Proof. Let fdg. Then there exists a function X € ® such that A\(z) = 1 for all
x1 < fand A(y) = 0 for all y; < g. Defining o : X — I, by pu(z)(s) = 1—=\z)(1—s)
forallz € X and all s € I, then p is (7, ¥)-continuous and pu(x)(s) = 0 for all z; < f
and u(y)(s) = 1 for all y; < g, that is, gé f and hence the condition (P1) of an

L-proximity is fulfilled.

Obviously, (f V ¢g)d h implies fdh and gd h. On the other hand fdh and gdh
means that there are A\, u € ® such that A(z) = 1 for all x; < f and A(y) = 0 for
all y; < h, and p(z) =1 for all z; < g and p(y) = 0 for all y; < h. If we take
v: X — I, with v(z)(s) = max{\(z)(s), u(z)(s)} for all x € X and all s € I, then
v is (7, )-continuous and v(z) =1 for all z; < f or 21 < g and v(y) = 0 for all

y1 < h. Hence (f V g)d h and thus (P2) is fulfilled.

Defining h : X — I, by h(x)(s) =0 for all z € X and all s € I, we get h(x) =0
for all x € X and h is (7, )-continuous. So, we can say that h(z) =1 for any x; <0
and h(y) = 0 for any g € L*. That is, 0 and g are ®-separated for all g € LX and
hence f =0 or g = 0 implies f§g. Thus (P3) is fulfilled.

It is clear from the definition of § that f ¢ g implies f < ¢’ and hence (P4) holds.

Let fdg and let u € ® such that p(z) = 1 for all 2; < f and u(y) = 0 for all



y1 < g. The functions \;, Ay : X — I defined by

and

for all x € X and all s € [y, are (7,)-continuous and also A;(x)(s) = 1 for all

x1 < f and A\y(z)(s) = 0 for all ;1 < g, but

R'(\(x)) = R (u(x)) = B2 (u(x)) > Ry(p(x)) = Ro(M ()

[N

and

1

R'(X2(2)) = R2(u(2)) < Ro(p(x)) = Ro(Aa()).

So, if we put h = (u~'(Rz2)) where u~'(Rz) € L, we get
Ro(Ai(x)) < W' (x) < Ro(Aa()),

and then A\(z)(s) = 0 for all z; < h and s € Ip; and Ay(z)(s) = 1 for all z; < A/
and s € Ip;. That is, A\j(x) = 1 for all z; < f and A (y) = 0 for all y; < h, and
moreover \y(z) = 1 for all z; < I/ and X\y(y) = 0 for all y; < ¢g. Hence, féh and
h'§ g and (P5) is fulfilled. Thus § is an L-proximity on X.

Now, let g € 75 and x € X with ¢'(x) = 1. Since g(y) = clsg(y) = A h(y),
then there exists h € L* with gdh’ such that h(z) = 0, and go A’ implgigs there
exists f € ® such that f(z) =1 for all ; < g and f(y) =0 for all y; < h'. Taking
p=f71(R?), we get p(y) = R2(f(y)) > (Ro(f(y))) =1 for all y1 < g’ where gd b
implies i’ < ¢/, and moreover u(y) = Rz(f(y)) < R (f(y)) < ¢'(y) for all y € X.
That is, p € 7 with 1 < g and p < ¢’ which means ¢’ € 7 and then ¢ € 7" and

75 € T

Conversely; let g € 7" and g # clsg, that is, there is x € X with clsg(x) > 0 and
g(x) = 0. Since = € sp¢’ € 7 and (X, 7) is a completely regular space, then there
exists f € ® such that f(z) =1 and f(y) =0 for all y € spg. Let u € L be defined



by uly) = (B'(f ()" = V f(y)(#) for all y € X, then u(y) < Ro(f(y)) < '(y) for
all y € X, which means that \/ f(z)(t) =1 for all z; < pand V f(y)(s) = 0 for
all y; < g, that is, f(z) =1 tfii" all x; < p and f(y) = 0 for alsl>j(y]1 < g, and this
means that p, g are ®-separated, and so 19 g. Now, 18 g implies
clsg(@) = N\ M) < p'(z) = R'(f(2)) =0,
goN
that is, clsg(z) = 0 which is a contradiction and then g € 75. Therefore, 7 = 7,

that is, ¢ is compatible with 7. O

Example of an L-proximity. Now, we introduce an example of an L-proximity

and we show that it induces a completely regular L-topology.

Example 6.1 Let X = {z,y} with z # y and let 7 = {0, 1, 21, y1}. Then, by means

of Example 2.1, (X, 7) is a GT31-space. Let & be the binary relation on LX defined
2

by

fdg <= thereis a (7,3)-continuous function h : (X,7) — (Ir, ) such that

h(z) =1 for all z € X with 21 < f and h(y) =0 for all y; < g

for all f,g € LX. ¢ is, by means of Proposition 6.3, an L-proximity on X compatible
with 7, that is, the L-topology 75 associated with ¢ is completely regular.

The following result also goes well.

Proposition 6.4 Let (X,d) be an L-prozimity space and f,g € L with f&g, and
let @ be the family of those L-prozimally continuous functions of (X,0) into the L-
prozimity space (I, p). Then f and g are separated by a (75, 3,)-continuous function

from X into I7,.

Proof. From (2.1), Lemma 2.1 and Remark 2.1 we can deduce that f and g are
d-separated, and therefore, by means of Proposition 2.3, they are separated by a

(75, 3,)-continuous function. O



If 9; and d, are two L-proximities on a set X, then d; is finer than d, or d, is
coarser than 01, provided

f 05 g implies f 0, g

for all f,g € LX ([14, 20]).

From the last proposition we prove this result.

Proposition 6.5 Let 1, 75 be two completely reqular L-topologies on a set X. Let

01 be an L-proximity compatible with T and do the L-proximity defined by

fd29 <= f, g are ®-separated in (X, 7).

Then, 15 is finer than T implies d is finer than ;.

Proof. Suppose that fd;g. By Proposition 6.3 there exists a (71, ¥)-continuous
function h : X — I such that h(z) =1 for all z; < f and h(y) =0 for all y; < g.
Since 71 C 7o, then h is (72, §)-continuous and from the definition of d we get that

f 02 g. Hence, §, is finer than ;. O

7. The relation between the G73.-spaces and the L-uniform

spaces

This section is devoted to study the relation of the L-uniform spaces defined in [15]

with the GT3:-spaces.
2

L-uniform structures. Let U be an L-filter on X x X. The inverse U~' of U
is an L-filter on X x X defined by U~ (u) = U(u™!) for all u € L¥*X where u™! is
the inverse of u defined by: v~ !(z,y) = u(y, z) for all z,y € X ([15]).

For each pair (z,y) of elements z, y of X, the mapping (z,y)" : LX** — L
defined by (z,y)" (u) = u(z,y) for all u € L*¥*X is a homogeneous L-filter on X x X.



Let U and V be L-filters on X x X such that (x,y)” <U and (y,z)" <V hold for
some x,y,z € X. Then the composition V ol of U and V is the L-filter on X x X
defined by

Vol)w) = \/ (Uu) A V()

vou<w

for all w € LX*X where u,v,vou € LX** and (vou)(z,y) = V (u(z,2)Av(z,y))

zeX
for all z,y € X ([15]).

By an L-uniform structure U on a set X ([15]) we mean an L-filter on X x X

such that:

(U1) (z,z)" <U for all z € X.
(U2) U =U".
(U3) Uold <U.

An L-uniform structure U on X is called a homogeneous L-uniform structure if it is
a homogeneous L-filter on X x X. A set X equipped with an L-uniform structure
(homogeneous L-uniform structure) U is called an L-uniform space (homogeneous

L-uniform space).
If (X,U) and (Y, V) are L-uniform spaces, then the mapping f : (X,U) — (Y, V)
is said to be L-uniformly continuous provided
Fulf x i) <V
holds.
Let U be an L-filter on X x X such that (z,2)" < U holds for all z € X, and
let M be an L-filter on X. Then the mapping U[M] : LX — L, defined by

UM =V Uu) A M(g))

ulg]<f

for all f € LY, is an L-filter on X, called the image of M with respect to U ([15]),

where u € LX*¥ and g,u[g] € L* such that:



To each L-uniform structure & on X is associated a stratified L-topology 7.

The related interior operator inty, is given by ([15]):

(inty f)(x) = U[Z](f) (7.1)
for all z € X, f € LX. An L-set f is called a 7-neighborhood of x € X provided

Uuii) < f.

Proposition 7.1 [15] Let f : (X,U) — (Y, V) be an L-uniformly continuous map-
ping between L-uniform spaces. Then the mapping [ : (X, 7)) — (Y, 7y) between the

associated L-topological spaces is (Ty, Ty)-continuous.

From (1.2) and (7.1) we have the following

Uil = N(x) and U[f] = N(f) (7.2)

for all z € X, f € LX, where N(z) and N(f) are the L-neighborhood filters of the

space (X, 7y) at z and f, respectively.

An L-proximity § on a set X is called stratified if @da for all a € L ([14, 20]).

We have the following result.

Proposition 7.2 [6] Let (X, 7) be an L-topological space. Then the binary relation
§ on L~ which is defined by

go f if and only if N(g) < f,
for all f,g € L*, is an L-prozimity on X, where < is the finer relation between
L-filters and N (g) is the L-neighborhood filter of (X, T) at g.

From (7.2) and Proposition 7.2 we shall deduce the following important result.

Proposition 7.3 For an L-uniform structure U on X, we get that the binary rela-
tion &y on L~ defined by
foug=Ulfl<g, (7.3)

10



for all f,g € LX, is a stratified L-prozimity on X, and moreover both of the L-
uniform structure U and the induced stratified L-prozimity &y are associated with

the same stratified L-topology 1y = s,

Proof. From (7.2) and Proposition 7.2, we get that &, defined by (7.3), is an L-
proximity on X. Since @ € 1, for all a € L, then U[a] < @ for all « € L, and thus
adya for all a € L. That is, &y is a stratified L-proximity on X. From (7.3) we
get that z; 0y f' <= U[i] < f, that is, f is a 7s,,-neighborhood of z if and only if
it is a m-neighborhood of x. Hence both of U and &y, are associated with the same

stratified L-topology 7y = 75,. O

We shall use the following result.

Proposition 7.4 [15] Let (X,U), (Y, V) be two L-uniform spaces. Then f : (X, U) —
(Y, V) is L-uniformly continuous if and only if f : (X,dy) — (Y,0y) between the

associated stratified L-proximity spaces is (8y, dy)-continuous.

From Proposition 2.5 and from Propositions 7.3 and 7.4, we can deduce the

following.

Proposition 7.5 Let F,G € P(X) with U[F] = U[xr] < xo = G' in the L-
uniform space (X,U) and let ® be the family of those L-uniformly continuous func-
tions h : (X,U) — (Ip,U*) for which x € X implies 0 < h(z) < 1. Then xr and

xq are P-separable.

Proof. From Proposition 7.3, we have yr 0y X, and from Proposition 2.5, we get
that xr, xg are separated by an L-proximally continuous mapping f : (X, dy) —
(Ir,6y~). Proposition 7.4 implies that f : (X,U) — (I;,U*) is then L-uniformly

continuous. O

Now, we shall prove that the stratified L-topology associated with an L-uniform

structure is completely regular.

11



Proposition 7.6 IfU is an L-uniform structure on X and 1 the L-topology asso-

ciated with U, then (X, 1y) is a completely reqular space.

Proof. Let + € X and F' € 7/, with © ¢ F. Since xp is a 7y-neighborhood of z,
that is, U[#] = N(z) < F’. On account of Proposition 7.5, we get that z; and xp
are separated by an L-uniformly continuous function f : (X,U) — (I,U*) which
is also, by means of Proposition 7.1, (7, Sy+)-continuous. That is, (X, 7y,) is a

completely regular space. O

Example of an L-uniform structure. In the following we give an example of

an L-uniform structure and we show that it induces a completely regular L-topology.

Example 7.1 The L-metrics in sense of S. Géhler and W. Géhler ([11]) canonically
generate homogeneous L-uniform structures as follows: For each L-metric g on a set
X, the mapping U, : LX*X — L, defined by
Up(u) = \/ a
€q, 5005, 0<é
for all u € L**¥X is a homogeneous L-uniform structure on X and moreover Tu, = To
(cf. [15]). From Propositions 2.8 and 2.9 we get that 7, and hence 7, is a completely

regular stratified topology.

The L-uniform structures can be characterized by means of families of prefilters

on X X X as follows.

Proposition 7.7 [15] There is a one - to - one correspondence between the L-
uniform structures U on X and the families (Uy)acr, of prefilters on X x X which
fulfill the following conditions:

(ul) 0 < B <« implies U, C Up.

(u2) For each o € Ly with \/ [ =a we havelU, = N Us.

0<p<a 0<fB<a

(u3) For all a € Lo, u € U, and x € X we have o < u(x,x).

12



(ud) u € U, implies u™ € U, for all a € Ly.

(ub) For each o € Ly and each u € Uy, we have o < V B.
veEUg, vov<u

This correspondence is given by

Uy = a-prld foralla € Ly and Uu) = \/ «

VEUN, v<U

for all u € L% where a-prUd = {u € L% |U(u) > a}.

An L-topogenous order (structure) < is called perfect ([22]) if for each family

(fi)ier of L-subsets of X with f; < ¢ for all ¢ € I it follows V f; < g.
iel

Proposition 7.8 (22| There is a one - to - one correspondence between the perfect
L-topogenous structures < on a set X and the L-topologies T on X. This corre-

spondence 1s given by
f<g & [<k<gforsomekerT

for all f,g € LX and
T={fel|f< [}

Let (X, 7) be a stratified L-topological space and < the complementarily sym-
metric perfect L-topogenous structure on X identified with 7, by means of Propo-
sition 7.8, and for each o € Lg let u, : X x X — L be the mappings which satisfy
that u,(x,z) =1 for all x € X and fulfill the following:

f if f<(gna) for some g € T,
ualf] = (7.4)

1 otherwise.

Lemma 7.1 These u,, for all « € Ly, satisfy the following:

(1) f < ualf] forall f € L¥,

13



(2) @ = uy[al for all a € Ly,
(3) Uy 0 Uy = Uy for all o € Ly,

(4) f =ualf] forall fer.

Here, using Lemma 7.1, we prove this result.

Lemma 7.2 For each o € Ly let U, be the set of all mappings u, which fulfill
(7.4) and that us(z,x) =1 for all x € X. Then the family (Uy)acr, i a family of
prefilters on X x X and fulfills the conditions (ul) to (u5) of Proposition 7.7.

Proof. For 0 < a < 3 we have: (1) If f < (g A@) for some g € 7, then u,[f] = f,
and f < (gA@) < (gAB) implies f < (g A 3) which means that ug[f] = f = ua[f].

(2) When f < (h A ) for some h € T we get ug[f] = f < ualf]-

The other cases of f also satisfy that ug[f] < us[f]. Hence, Uz C U, and (ul) is
fulfilled.

From (ul) we get that N Uz C U,. But whenever f < (g A @) for some
0<f<a

g € 7 we have u,[f] = f < wug[f] for all 0 < f < aand « = '\ (. And
0<fB<a
also, if f & (g ANa) for all g € 7 we get that u.[f] =1 < N wugl[f] =1, and
0<fB<a
then N wg[f] > ua[f] for all f € LX, which means that | Uz 2 U,. Hence
0<fB<a

0<fB<a
U,= [ Uz and (u2) holds.

0<f<a

From that u,[1] =1 for all & € Ly, we get that
ua[1)(2) = \/ (1Y) Aualy, ) =V (taly, 7)) = ua(z,2) =1
yeX yeX
for all x € X that is, uy(z,z) > « for all @ € Ly, z € X and all u, € U,. Hence
(u3) holds.

For f < (g A@) for some g € 7 we have f < @, and then u,[f](z) = V (f(y) A
yeX
ua(y,x)) = f(x) for all x € X (from that f(z) < a and o < u,(x,x)). Also, when

uo[f] =1, we get u,[f](x) = y¥X (f(y) Nua(y, ) = ug(z,2) = 1 for all z € X.

14



Now, ug'[f](z) = V (f(y) Aug'(y, x)) =V (f(y) Nua(z,y)). I f < (9A@), then

yeX

u'[f](z) = f(x) for all z € X, otherwise u_'[f](z) = ua(z,2) = 1 for all z € X.

«

That is, u,' € U, whenever u,, € U, and therefore (u4) is fulfilled.

Since u, 0 Uy = u, for all a € Ly and all u, € U,, then

a < V 8= \/ B,

ug€Up,ug<uo ug€Ug,ugoug <uqa
and therefore (ub) is fulfilled.
Now, we prove that for all o € Ly, these sets U, are prefilters on X x X.

Let 0 : X x X — L be the mapping defined by 0(x,y) = 0 for all 2,y € X.
Then O[f](z) = V (f(y) AO(y,2)) = 0 for all f € L* and z € X, and even
X

=

0(z,z) =0 # 1. Hence 0 & U,.

Let u € U, and v > u. Then v(z,z) =1 for all z € X, and also v[f] > u[f] for
all f € LY. If f < (g9 A@) for some g € 7, we have f < @ and v(z,2) = 1 > «
and then v[f](z) = V (f(y) Av(y,z)) = f(z) for all z € X. That is, v[f] = f.

yeX
Otherwise, if f < (g A @) does not hold for all g € 7, we get that v[f] > u[f] =1

for all f € LX. Hence v € U,.

Let u,v € Uy,. Then (u Av)(z,z) = u(z,z) ANv(z,z) =1 for all z € X. Since

(wAo)flz) =V (fy) A (uAv)(y,z)

= \é((f(y) Au(y,z)) A \/X(f(y) Avly, 1))
= u[f](z) Av[f](z)

for all f € LX and x € X. Then (u A v)[f] = u[f] Av[f] for all f € LX. If
[ < (g AN@) for some g € 7, we have (u A v)[f] = f. Otherwise, (u A v)[f] = 1.
Hence (uAv) € U,. Thus (U, )acr, is a family of prefilters on X x X and fulfills the

conditions (ul) to (ub). O

Now, we have the following important result which shows that the L-uniform

structures are compatible with the completely regular stratified L-topologies.
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Proposition 7.9 Let (X, 7) be a completely reqular stratified L-topological space
and ® an L-function family of all (7,)-continuous functions on X. Then the
mapping U : LX*X — L defined by

Uu) = \/ « forallue L™,

vEUN, VU

where Uy, is the set of all mappings u, which fulfill (7.4) and that uy(z,x) = 1 for

all x € X, is an L-uniform structure on X compatible with T, that is, 74 = T.

Proof. From Lemma 7.2 and Proposition 7.7, we get that U is an L-uniform

structure on X.

Now, let g € 7y, g # 1 and g(z) = 1. Then intyg(z) = V (U(u) Ah(z)) =1,
which means that there is some u, € U, with U(u,) =1 > gz[hsiih that u,[h] = h <
g, h < (k A@) for some k € 7, and this means that k = (g A @) € 7 satisfies that
h<k<g, h(x)=1and k € 7, that is, k(z) =1, k < g and k € 7, and then g € 7

and 7y C 7.

Conversely; let ¢ € 7, g # 1 and g # intyg, that is, there is z € X with
intyg(x) = 0 and g(z) > 0. Since = € sog € 7 and (X, 7) is a completely regular
space, then there exists f : (X,7) — (I, <) such that f(z) =1 and f(y) = 0 for all
y € sog’. Let p € LX be defined by u(y) = (R (f(y))) = V f(y)(t) for all y € X,
then u(y) < Ro(f(y)) < g(y) for all y € X, which meanstztilat V f(x)(t) =1 for
all zy < pand V f(y)(s) =0 for all y; < ¢/, that is, f(z) =1 tfii all 21 < p and
f(y) =0 for allSZf < ¢/, and this means that z,, ¢ are ®-separated for all z; < p,
and so u, g are ®-separated, and from (2.1) and Proposition 6.3 we get p < g,

wu(x) = 1.

Now, intyg(z) = V (U(u) A h(z)) > \  h(x) for some u, € U, with
ulh]<g ualh]<g
U(uy) = 1 > «, which means that intyg(z) > V  h(x), and is also satisfied
h<g,g€7

when replacing h by u, that is,

intyg(z) > \/ h(z) > pl) =1,

h<g,g€t
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and then intyg(z) = 1 > 0 which is a contradiction and therefore g € 7,. That is,

T = Ty, and thus U is compatible with 7. O

8. The relation between the GGI3.-spaces and the G-Compact

spaces

Let M be an L-filter on a set X. The element z € X is said to be a cluster point of
M if the infimum M AN (z) of M and the L-neighborhood filter N'(x) at x exists.

Equivalently if there exists an L-filter K finer than M which converges to x, that
is, K < N(z) ([13]).

G-Compact spaces. An L-topological space (X, 7) is called G-compact ([13])
if every L-filter on X has a cluster point in X. This notion of L-compactness fulfills
the Tychonoff Theorem, that is, the product of a family of G-compact spaces is
G-compact ([13]).

Proposition 8.1 [6] Every G-compact subset of GTy-space is closed and every G-
compact GTy-space is GTy-space. Moreover, every closed subset of G-compact space

(X,7) is G-compact.

Let us define the cartesian product of a number of copies of the L-unit interval

11, equipped with the product L-topology on it, as an L-cube.

In the following we shall benefit from these facts.

(I) The pair (I, 7;), of the closed unit interval I and the usual topology 77 on it,

is a compact Th-space in the classical topology.

(IT) The closed unit interval I = [0, 1] can be identified with the L-number [0, 1]~
which has value 1 over [0, 1] and 0 otherwise ([11]).

(IIT) The L-topology & on I, is, up to an identification ([11]), the usual topology

on I.
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Proposition 8.2 The L-unit interval (I1,,<¥) is a G-compact GTy-space.

Proof. Let (I,T;) be the closed unit interval with the usual topology on it. From
that in the classical topology we have (I,T7) is a compact space, that is, every filter
on I has a cluster point, then defining x : I — I, by x(r) = 7 for all r € I, we
get a homeomorphism between (I, 77) and (I, <) and hence (I, ) is a G-compact

space.

Also, since (I,T7) is a Ty-space, that is, any two distinct points have disjoint 77-
neighborhoods, then using the same homeomorphism above, we have for any f # ¢
in [, two disjoint S-neighborhoods, that is, N'(f) A N (g) does not exist, and thus

(I1,S) is a GTy-space. Hence, (I1,S) is a G-compact GTy-space. O

Now, we prove the following result.
Proposition 8.3 The L-unit interval (I, <) is a GT'9.-space.
2

Proof. Since (I,<), by means of Proposition 8.2, is a G-compact GT;,-space, then
from Proposition 8.1, we get that (I;,S) is a GTy-space. Hence, Proposition 2.8

gives us that (I, <) is a GT31-space. O
2

From that G-compact spaces fulfill the Tychonoff Theorem ([13]) and from (3) in
Proposition 1.3 the product L-topological space of GTs-spaces also is a GT,-space.

Then, by means of Propositions 8.1 and 8.2, the following result goes clear.

Proposition 8.4 The L-cube is a G-compact G'Ty-space, and consequently a GT)y-

space.

Proof. Since the L-cube is the product of copies of L-unit interval (I,<S) and
since (11, ) is, by means of Proposition 8.2, G-compact GTs-space, then from (3) in
Proposition 1.3 and from that the G-compact spaces fulfill the Tychonoff Theorem it
follows that the L-cube is G-compact GT,-space. Moreover, Proposition 8.1 implies

that the L-cube is GTy-space. O
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We shall prove the following important result.

Proposition 8.5 Let (X, 7) be an L-topological space and let ® be the family of all
L-continuous functions f : (X,7) — (I1,). For each f € ®, let Y; denote the
space Iy,. LetY = f];[(b Y; with the product L-topology Sy on it. If (X, T) is a GTQ%—
space, then X is homeomorphic to a subspace of Y. More Precisely, the mapping

e: X =Y, e(r)=2= 1[I zy, xy = f(x), is a homeomorphism from X onto e(X)
€d

when (X, 1) is a GT9.-space.
2

Proof. Suppose that (X,7) is a GTgé—space and consider the evaluation map e :
X =Y, 2~ (f(z))fee = 2. In view of Corollary 6.1, e is one - one. Also e is L-
continuous from that every f € ® is continuous (each composition pyoe: X — Y7,
x — f(x) is continuous, where p; : Y — Y} denotes the projection map). If

Z =e(X), then e: (X,7) — (Z,3%) is a bijection L-continuous mapping.

Now we show that e is L-open. As in the proof of Proposition 6.2, the family

B={f"(u)|fe®pueS}.

is a base for the L-topology 7 on X. Since for a family (g;);es of L-sets in X, we
have e(V g;) = V e(g;) and (g1 A+ -+ A gn) = e(g1) A+ -+ Ae(gn), it follows that to
jeJ jeg

show that e is L-open, it is sufficient to show that e(p) € Sz for each p € B.

Let fe®, peSinYyand p= f'(u) =po f with p € B. Then
e(p)@) =\ pla)=p)=pf)= "V pf@)=p; ()
) gep; ! (f(x)
for all # = e(z) € Z. Since p;' (1) |z= e(p) and py is continuous, then p;' (1) |z is
open in 7z and thus e(p) € 77. Hence e is L-open and therefore e : X — Z is a

homeomorphism and (X, 7) is homeomorphic to a subspace of Y = [] Y;. O
fed

The following result now is obtained.

Proposition 8.6 Let (X, 7) be an L-topological space. Then (X, 1) is a GT'9.-space
2

if and only if X is homeomorphic to a subspace of an L-cube.
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Proof. From Proposition 8.5, the necessity of the condition follows.

Since the L-unit interval (I1,,<) is a GT: 31-space from Proposition 8.3 and that
the product L-topological space of G'I'31-spaces is also a GT3:1-space from Corollary
3.1, then (X, 7) itself is a GT31-space. O

2

The following results come easily.

Proposition 8.7 A G-compact space (X,7) is a GTy-space if and only if it is a
GTS% -space.

Proof. Since any GTy-space (X, 1) which is G-compact is a GTy-space, then it is,
by means of Proposition 2.8, a GT3:-space.
2

The other direction follows from Proposition 2.1 and from (1) in Proposition 1.3.

Lemma 8.1 [6] If 11 and 1o are L-topologies on a set X, 11 is finer than 1o and

(X, m) is G-compact, then (X, 1) also is G-compact.

Now we prove this result.

Proposition 8.8 Let 7 and 15 be L-topologies on a set X with 71 be finer than
Ty, and let (X, 1) be a G-compact space and (X, 72) be a GT91-space. Then T is
2

equivalent to 5.

Proof. From Proposition 2.13, we get (X, 1) is also a GTgé—space, and from Lemma
8.1 we have (X, 73) is also a G-compact space. Then we can find the identity mapping
idy : (X, 1) — (X, 72) which is a bijective L-continuous mapping and L-open, that

is, a homeomorphism. Hence, (X, 1) is equivalent to (X, 73). O

Now, we show this essential proposition.

Proposition 8.9 For every L-topological space (X, T) the following are equivalent:
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(1) (X,7) is a GTg1-space,
2
(2) X is homeomorphic to a subspace of an L-cube,
(3) X is homeomorphic to a subspace of a G-compact GTy-space,

(4) X is homeomorphic to a subspace of a GTy-space.

Proof.

(1) = (2): Follows from Proposition 8.6.

(2) = (3): Since every L-cube is a G-compact GTy-space, then this implication
is true.

(3) = (4): Follows from that every G-compact GTy-space is a GTy-space.

(4) = (1): From (3) in Proposition 1.3 we have that every subspace of a GT}-

space is a GTy-space, and therefore is a G'T3:-space. O
2
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